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Numerical Solution of Large 
Sets of Algebraic Nonlinear Equations 

By Ph. L. Toint 

Abstract. This paper describes the application of the partitioned updating quasi-Newton 
methods for the solution of high-dimensional systems of algebraic nonlinear equations. This 
concept was introduced and successfully tested in nonlinear optimization of partially separa- 
ble functions (see [6]). Here its application to the case of nonlinear equations is explored. 
Nonlinear systems of this nature arise in many large-scale applications, including finite 
elements and econometry. It is shown that the method presents some advantages in efficiency 
over competing algorithms, and that use of the partially separable structure of the system can 
lead to significant improvements also in the more classical discrete Newton method. 

1. Introduction. In recent years many researchers have investigated the solution to 
nonlinear problems involving an increasingly large number of variables. The finite 
element method has been very instrumental in this interest, since nonlinear partial 
differential equations give rise, by this method, to sets of nonlinear algebraic 
equations whose number of variables is proportional to the number of points 
considered in the discretization of the problem (see [13] for example). In this field, it 
is not uncommon that the Jacobian matrix of the system is unavailable or costly to 
compute, and one may be tempted to use quasi-Newton approximations for this 
important matrix. This type of procedure has indeed proven to be useful in small 
dense problems [2], and had been extended [10] to take into account the sparsity 
inherent in many of the large problems. 

In the related field of unconstrained optimization, similar efforts were made to 
obtain methods that could handle efficiently a large number of nonlinear variables. 
Sparse quasi-Newton algorithms were proposed [12], [7], [11], and, more recently, a 
new class of methods, applicable to so-called "partially separable" functions has 
shown a lot of promise for the efficient solution of minimization problems involving 
several thousands of nonlinear variables (see [3], [4], [5] and [6]). These partially 
separable functions are functions that can be written as 

m 
(1) 1(x)= = i W, 

i=1 

where x is the vector of variables belonging to R', and where each "element 
function" fi(x) involves only a few components of this vector, or has a low-rank 
Hessian matrix for other reasons. Problems of this nature arise in discretized 
variational calculations, free-knots splines, nonlinear least squares, nonlinear net- 
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works, shape transformation and many other fields. The procedure proposed in [3], 
and subsequently analyzed and tested in the other papers referenced above, takes 
advantage of this low-rank property by using low-rank quasi-Newton approxima- 
tions to the Hessian matrices of the various fi(x), giving up the idea of approximat- 
ing the Hessian of f(x) as a whole; hence the name "partitioned updating 
methods". Classical updating formulae, such as BFGS or rank one (RK1), were used 
for these low-rank approximations. 

The numerical efficiency of this type of algorithm in unconstrained optimization 
leads naturally to the question as to whether the same kind of approach would be 
successful in the, nonlinear equation setting. It is the purpose of this paper to throw 
some light on this issue. 

In Section 2, we analyze more formally the partially separable structure that is 
present in many large-scale applications, as well as the various approximating 
schemes for the Jacobian matrix that result from this analysis. We also describe our 
algorithm and discuss a special memory management method and its implication on 
some parts of the calculation. In Section 3, we describe the test problems that have 
been used for the numerical experiments and present their results. We also state 
some conclusions and perspectives concerning the numerical solution of partially 
separable nonlinear problems in many variables. 

2. Algorithmic Framework. 
2.1. Partially Separable Systems of Nonlinear Equations. In the following, we will 

be concerned with the solution of the equation 

(2) f(x) = O 
where x is a vector of unknowns belonging to the n-dimensional real vector space, 
and where f(x) is a vector of the same space that can be computed, at a cost, for 
any given value of x. We will be interested in the case where f(x) is a nonlinear 
function of x that is at least once continuously differentiable. 

To solve our problem, we will, at a given point x, consider the local linear model 

(3) f(x + s) =f(x) +? s, 

for sufficiently small displacement s, where J is a suitable approximation to J(x), 
the Jacobian matrix of f(x). We can then solve the corresponding linear system, and 
iterate on this process, which yields an iterative scheme of the type 

(4) Xk+1 = Xk -[jk]-lf(Xk) (k = 0, 1, 2,... ), 
where x0 and J0 are given. Clearly, and as is common in this field, we will, in 
practice, use a variant of (4) that allows for some damping along the direction d k 

defined by the (approximate) solution to 

(5) Jkdk = -f(xk). 

The interested reader is referred to [2] for more details. 
We will say that the function f(x) is partially separable if and only if two 

conditions are satisfied: 
1. f(x) is described as a sum of "element functions", i.e, 

m 

(6) f(x)= = fi W 
i=1 
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2. each one of the m element functions fi(x) has a low-dimensional range and/or 
domain in R'. 

The term " low-dimensional" means that, in practice, this notion will be of interest 
when the maximal dimension of these ranges/domains will be much smaller than n, 
the total number of variables, although the formal definition does not prevent this 
quantity to be as great as n - 1. 

It is important to realize that this notion covers most of the problems involving 
many variables. A typical case is when each fi(x) only involves a few of the n 
variables and has an image with only a few of its components being nonzero. This 
particular structure naturally results in a sparse Jacobian matrix for f(x), but it is 
interesting to observe that this sparsity is only a consequence of the partially 
separable structure, and not the other way round. Partial separability is, in essence, a 
geometric description of the underlying structure of the considered problem, and is 
invariant with respect to the particular basis chosen, in contrast to sparsity. 

One of the important cases where partial separability arises is in the finite element 
method, where f(x) is decomposed into a sum of functions related to each element 
of the discretization (see [13]), hence the name "element functions". In this setting, 
the domain of each of these functions is contained in the subspace spanned by the 
canonical basis vectors corresponding to the variables occurring in a single element 
(the "elemental" variables), and its range is also contained in a low-dimensional 
subspace. We have used the expression "is contained in" on purpose, since, in a fair 
number of practical instances, these element functions are also invariant with respect 
to certain translations of their elemental variables, and this reduces even further the 
dimensionality of their domain. For example, in stress analysis, the value of the 
internal stress in a particular element is invariant for any translation of the complete 
element in the three-dimensional space. 

Other large partially separable nonlinear problems arise in boundary value 
computations, and other discretized nonlinear functional equations. 

2.2. Partitioned Updating. It is now interesting to see that some of the classical 
methods for computing a (quasi-)Newton approximation J to J(x) can be deduced 
from particular choices of element functions in the decomposition (6). 

1. If one chooses, for any choice of f1(x), to compute their Jacobians Ji(x) 
analytically or by finite difference, it is easy to see that, because 

m 
(7) A~X) EJi(X) 

i=1 

for all x, the overall matrix will be the analytical Jacobian of f(x), or a finite 
difference estimation of it. A typical iterative method to solve (2) is then identified 
with (the discrete) Newton's algorithm. 

2. One may also choose to describe f(x) as the sum of canonical basis vectors 
multiplied by the corresponding component of f(x), namely 

. n 

(8) f (x) =EeTf (x) 
- 

ej, 
i=1 

where ei denotes the ith vector of the canonical basis. For these element functions, 
we observe immediately that the range of each one of them is of dimension 1 (it is 
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span[ei]), and hence the definition of partial separability applies. It is well-known 
(see [2], for example), that a least-change secant update for this decomposition, i.e., a 
row-by-row partitioning of the Jacobian, yields the classical Broyden formula 

(9) J+= J + (y - Js)sT/sTs, 

where we have used the notation + to denote a quantity related to the next iteration 
of the algorithmic process (4), and where 

(10) s = x+-x 

and 

(1 1) y = f(x+) -AfX)- 

3. Specializing the previous choice, when the number of variables n is large, we 
assume that each element function in (8) depends only on a few variables, those that 
actually appear in the ith nonlinear equation. This modification now restricts the 
domain of each element function, in addition to the previous case, which only 
restricts its range. Classically again, the least-change secant update corresponding to 
this choice is Schubert's update [10]. 

A unified local convergence theory based on this observation has been published 
in [4], and Q-superlinear convergence to an isolated solution x* is shown for these 
quasi-Newton methods under standard assumptions. 

Why write more about partially separable nonlinear systems, since well-known 
methods seem to exploit this structure already? Firstly, we must emphasize the 
geometrical viewpoint that is missing in the more traditional approaches to large 
problems based on sparsity. One can also see that, for some examples, the row-by-row 
partitioning of the Jacobian matrix may be rather unnatural. In finite elements 
again, the Jacobian is described as the sum of the Jacobians of the element 
functions, which are usually small square matrices of dimension larger than one, and 
this partitioning, although fitting in our partially separable context, is totally ignored 
by Broyden's or Schubert's methods. We may therefore prefer to preserve this 
structural information, and use a quasi-Newton approximation to the Jacobian of 
each element function, as given in (6). This amounts to setting up a partially 
separable local linear model of the form 

m 

(12) f(x + s) = E ({f(x) s +Jis 
i=1 

instead of (3), and modifying the equation (5) to read 

m et 

(13) 2;Jik d k= - E A Wx) 
W i= l ~i= l 

This approach has been called "partitioned updating" in [3], where quasi-Newton 
formulae were used in the optimization context; we will retain this terminology here, 
and use the Broyden update (9) for improving Jk, our current approximation to 

Ji(Xk). 
The resulting algorithm may then be broadly described as follows, if we assume 

that x 0 and { JjO } m 1 are given. 
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1. Compute fi(x0) for i = 1, . . ., m, and hence f (x0). Set k = 0. 
2. Compute the search direction by solving (approximately) the linear system (13). 
3. Compute xk1l and f(xk~l) by using a line search from xk along dk, i.e., 

compute a scalar tk such that 

(14) xk+l = xk + tk . dk 

and the norm of f(xk+ 1) is sufficiently smaller than that of f(Xk). 

4. Test for termination. 
5. Update the element Jacobian approximations by applying Broyden's formula 

(9) to each one of them, with s and y being defined, for the ith element, by 

(15) s = x -k+i xk 

and 

(16) yi = fi(Xk+l) _f(xk) 

6. Set k to k + 1, and return to step 2. 
We again refer the interested reader to [2] for further details concerning the line 

search, termination criteria and other points not explicitly discussed above. 
2.3. Storing Approximate Element Jacobians. We now investigate the consequences 

of partial separability on the storage scheme that is used for the element Jacobian 
approximations Ji. 

One very common reason for the range and domain of an element function to be 
of low dimension is that only a few of the components of their vectors are nonzero. 
In other words, a given element function does not contribute to all n equations and 
does not involve all n variables. In this frequent case, it is clear that the Jacobian Ji 
of this element will only contain a few nonzero rows and columns, and that the 
superposition of those small (possibly) dense submatrices induces, in J, a well- 
defined sparsity pattern. Instead of keeping track of the total sparsity pattern of J, 
as is usually done, we will, in our framework, keep track, for each element, of the 
respective variables (the elemental variables) and respective equations. This can be 
done conveniently, and this kind of reduction in dimension can therefore be handled 
by the data structure. 

It may also happen that the domain and/or range of an element Jacobian is of 
low dimension, but is spanned by vectors other than those of the canonical basis. In 
this case, the information can no longer be represented by lists of components, but 
some explicit reduction technique is needed. We propose to consider the representa- 
tion 

(17) J1 = UT, WI (i = 1,...,m), 

where the columns of UL span the range of Ji and the rows of Wi its domain, for all 
values of the variables. (In this equation, we assume that Ji is a dense matrix, i.e., 
that the possible reduction explained in the previous paragraph has already been 
carried out. This assumption will also be made further below.) T1 is, in fact, the part 
of the Jacobian that we really wish to approximate. It is often the case that the 
matrices U} and Wi are identical for a large number of elements, except for the 
assignment of the elemental variables; advantage can be taken of this structure to 
store only the different ones, or to ask the user to provide routines for their 
manipulations, as is done in [6]. Then only T1 is stored and estimated by the 
numerical algorithm. 
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This can be best illustrated by a small example. Consider the nonlinear system of 
equations where the ith element function is given by 

[fi(x)]2i-1 = 3(X2i- X2i+?) + 2x2i- 5 
+sin(x2i1 - X2i- X2+l)sin(x2i-1 + x2i -X2i+1 

(18) [[f(x)]2i = -(x2-11 - x2i+?)exp[x2i-1 - - x2i+11] + 4x2 - 3, 

[fi(X)]2i+l = -2[fi(X)12i-19 

for i-1 up to m, and where the other components of fi(x) are zero. Clearly, only 
the components 2i - 1, 2i and 2i + 1 of x and f(x) play a role in this element, so 
its domain and range are restricted to the subspace spanned by e2i-1, e2i and e2i+l. 
Furthermore, it can easily be seen that, in fact, 

(19) range[fi(x)] = span[e2i, e2, l,-2e2i+1] 

while 

(20) domain[fi(x)] = span[e2i,e2,-1 - e2i+11] 

for all x. Hence, in this case the lists of elemental variables and equations will both 
contain 2i - 1, 2i, 2i + 1, and the matrices UI and W, will be given by the 
expressions 

(21) (i 

= 

and 

(22) Wi 0 1 0) 

It is interesting to observe that, since structural information is stored twice for the 
same entries of the overall Jacobian at positions where two or more element 
Jacobians overlap, pointer storage needed for the proposed scheme is usually slightly 
larger than in more classical approaches to sparsity. On the other hand, if the 
matrices Uj and/or Wi are not reduced to the identity and do not vary too much 
with i, storage for real numbers can be less for the new technique than for the 
traditional storage procedure. 

We now wish to rewrite the equations from which we estimate J. in terms of the 
matrix Ti. Consider the quasi-Newton or secant equation first. We obtain 

(23) Yi= JiS= UiTWiSig 

where both y1 defined in (16) and s have been restricted to the subspaces spanned 
by the elemental rows and variables of the ith element (hence the subscript i in si). 
This yields, as a new secant equation, 

(24) Ti(Wisi) = Ui]Yiy, 

where the superscript I denotes the generalized inverse (remember that y1 is in the 
column space of UL!). 

Similarly, assume that one wishes to estimate the jth column of T1 by differences. 
We want to use the relation 

(25) Tiej = some difference in fi(). 
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The estimation process can now be rewritten as: 
1. compute 

(26) hj=aWife 

for some steplength a, 
2. evaluate the quantity 

(27) zj =f(x + hj) -fi(x), 

3. estimate the jth column of Ti by setting the difference in (25) equal to 

(28) (Uiz )/a- 

Observe also here that zj is always contained in the column space of Ui, so that the 
computation of equations like (28) is quite simple. 

3. Some Numerical Tests. 
3.1. More Details About the Tested Algorithms. We now present some numerical 

experiments that were performed with methods of the type just described. Before 
presenting the test problems, however, it is helpful to give some more details about 
the numerical procedures that were actually implemented. 

Earlier on, we mentioned that the linear system (13) need not be solved to full 
accuracy. In practice, we have used an iterative linear least squares method (LSQR, 
by Paige and Saunders [9]) until the residual was reduced by a sufficient amount. 
This is only one possible choice that has been made for simplicity, and there are 
clearly a number of interesting alternatives, such as frontal methods (especially in 
the finite element context), SOR or more general sparse solvers. However, it was not 
our purpose to test efficiency of the linear algebra part of the nonlinear algorithm, 
but, instead, to compare different ways of handling the nonlinearity itself. Hence, 
these more efficient procedures for solving the linear system were not implemented. 

At the starting point, and following [2] again, we choose to evaluate the initial 
Jacobian (i.e., the Jacobians of the element functions at the starting point) by finite 
differences. This strategy was also used when the step computed by solving (13) was 
not a descent direction for the 12-norm of the residual, the merit function that was 
used throughout the calculation. 

The line search was implemented using safeguarded cubic/quadratic interpolation 
in a very classical fashion, but care was taken not to reevaluate an element function 
whose elemental variables were not modified since its last evaluation. This "special" 
feature, together with the difference estimation of the Jacobians element-by-element, 
account for the fractional number of function evaluations that appear in the 
numerical results presented below. 

Different approximation schemes for the Jacobian(s) are tested below. First, a 
method is examined that uses finite differences to estimate the element Jacobians. 
This amounts to a rather traditional discrete Newton algorithm. However, the 
element-by-element estimation and the particular,,storage scheme we use for the 
elements will allow some further refinements: since the dimension of Ti can be 
smaller than that of Ji, fewer differences are needed to estimate it. The gains 
resulting from this observation will be investigated by comparing an algorithm that 
estimates Ji by finite differences and one that only estimates Ti by the same method. 
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Amongst the partially separable quasi-Newton updates, we will restrict ourselves 
to the application of Broyden's formula (9) to different partitionings: the classical 
Broyden update for the row-by-row description of the nonlinear system, Schubert's 
update when advantage is taken of the fact that not all variables occur in all 
equations, and the general partitioned updating based on the natural decomposition 
of the problem into elements. 

It is worth mentioning, at this point, that the updating formula (9) is scale 
invariant on the range of fj(x), but not on its domain, in contrast to quasi-Newton 
updates for minimization, like the BFGS formula. Another formula, also due to 
Broyden [1] and usually called the "bad" Broyden formula, provides scale invariance 
on the domain, but not on the range. Testing various partitionings of the Jacobians 
together with this update has been left for further work. Other combinations are still 
possible, like using Schubert's formula together with nontrivial W, for each equation, 
but the results available for this algorithm are not sufficiently complete to be 
reported here. 

We may also try to predict the behavior of the two algorithms which takes 
information in UJ and Wi into account (discrete Newton and partitioned Broyden), 
when U. and/or W, are wrongly defined. A typical case may be when one of these 
matrices is, in fact, different from the identity, but when this structure is ignored by 
the user and the identity is used instead. We anticipate that the discrete Newton 
method would be substantially better than partitioned Broyden, because it estimates 
the true Jacobian, and therefore the structure of its domain and range as well, while 
the quasi-Newton approximation using (9) relies on an external specification of the 
domain. If this specification, i.e., W, is wrong or incomplete, one may expect the 
quasi-Newton approximations to be of poor quality, and hence the resulting conver- 
gence to be significantly impaired. Using the identity as U. when the range of J,(x) 
has a dimension lower than its number of elemental variables should be, according 
to the previous paragraph, is of less importance. 

Finally, the case where si is zero for some element i has been dealt with by simply 
skipping updating J., as no information on this element can be gained from such a 
step. 

3.2. The Test Problems. The nonlinear systems that were used for the numerical 
tests are now described. We first used three classical problems from the Argonne test 
set [8]: Broyden tridiagonal and banded systems, and the discretized boundary value 
problem. We also used the gradient of the linear minimum surface problem 
described in [3] and [6]. Finally, we included five new problems with variable 
dimension, two of them being of the finite element type. 

3.2.1. A trigonometric system. The element functions are defined by 

51 

(29) [f,(X)]5,_j 
= 5 - i[1 - cos(x5,j)] - 

sin(x5i-,) 
- E cos(xk) 

k=5i-4 

for j = 0 to 4, the other components of fj(x) being zero. The starting point is 
defined by 

(30) x, = 1/n (i = 1,...,n). 
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3.2.2. A trigonometric-exponential problem [trigexp 1]. The element functions are 
defined by 

(31) [f1(x)] =3x + 2x,+l - 5 + sin(xi - 
x,+1)sin(x, 

+ 
x,+1), 

[j(x)] ,+1 = -x exp[x, - x1+1] + 4x,+1 - 3, 

the other components of f,(x) being zero. The starting point is at the origin. 
3.2.3. A variant of the preceding system [trigexp 2]. The element function compo- 

nents are described in (18) and the starting point is given by 

(32) xI =1 (i = 1 ...n). 

3.2.4. Two finite element type problems. The last two problems are the bilinear 
finite element discretization of the heat radiation equation on the unit square. The 
basic equation is 

(33) [ kx ( Tx", Ty" ) Tx"] + [ k Y ( Tx", Ty" ) Ty"] + Q = O. 

where the gradient of the temperature has the components Tx' and Ty, and where 
[ ]' denotes the partial derivative of the quantity inside the bracket with respect to 
the variable x. Dirichlet boundary conditions were chosen, inasmuch as the tempera- 
ture T was constrained to be zero on the boundary. In the tests, Q was chosen to 
represent point sources/sinks at the points 

(0.9,0.1), (0.1,0.3), (0.5,0.5), (0.1,0.9) and (0.9,0.9) 

with respective values 

-1.0, -0.5, 1.83, -0.6 and 0.27. 
In the first problem (nlheatl), the conductivities were chosen according to the 
relations 

kx (Tx', Ty") = max(0, 1 - 69.444445 [Tx']2) 

kV (Tx', TV"') = max(0, 1 - 69.444445 [Ty), 

while in the second of these tests they were both set to 

(35) kx (Tx", Ty") = ky (Tx", Ty") = 0.01 + 100 exp [-0.1 || T'l], 

where JIT'll is the Euclidean norm of the gradient of the temperature. The starting 
point is at the origin for both problems. 

It can easily be seen that the form of (34) implies that each element function has a 
range and a domain of dimension two, even though there are four variables (the 
temperature values at the four corners of a square element); this is not the case when 
(35) is used. 

3.2.5. Summary of the tests. We now summarize the characteristics of the tests that 
were run. In the following, we indicate by the symbol # the problems where the 
natural decomposition into elements is the decomposition into the equations of the 
nonlinear system. Since we assume that all variables do not necessarily appear in all 
equations, the partitioning corresponding to the partially separable approach is 
identical to the partitioning corresponding to Schubert's update. We also mark the 
problems with the symbol $ when the matrix Uj and/or W, is not reduced to the 
identity for at least one (usually most) element(s) of the decomposition. 
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Nonlinear heat conduction 1 n = 100, 169, 225, 324, 400, 
484. 

Nonlinear heat conduction 2 n = 100, 169, 225, 324, 400, 
484, 576. 

Minimum surface n = 25, 49, 64, 81, 100, 
121, 169, 196, 225, 289, 
324, 400, 484. 

Broyden tridiagonal (?, $): n = 50, 100, 250, 500, 750, 
1000. 

Broyden banded (*,): n = 50, 100, 250, 500, 750, 
1000. 

Trigonometric (,) n = 51, 101, 251. 

Trigexp1 (,): n = 100, 250, 500, 750, 1000. 

Trigexp 2 (,$): n = 51, 75, 101, 125. 

Discretized boundary value (*, $): n = 50, 75, 100, 120. 

Using these 54 problems, 223 runs were made with the algorithms described 
above. All calculations were done in double precision on a DEC2060 of the Facultes 
Notre-Dame de la Paix in Namur (Belgium), using the Fortran 77 compiler without 
optimization. This machine has a wordlength of 36 bits and uses 63 bits to hold the 
mantissa of a double-precision number. All methods were stopped when the relative 
max norm of the residual (see [2] for details) was below 10-7. 

3.3. Results and Discussion. 
3.3.1. Using the structure of the range and/or domain. We first examine the effect, 

in the numerical computations, of using the structure of the range and/or domain of 
the element Jacobians Ji(*), as described in (17). For this purpose, we selected, in 
the test problems mentioned above, those where advantage could be taken of this 
structure (flagged with $). We compare the two methods that can deal with this 
situation (discrete Newton and partitioned Broyden). A summary of their perfor- 
mance can be found in Table 1. In this table, we use the following abbreviations: 

- nprob is the number of problems considered in this set, 
- av.dim. is the average dimension of the considered problems, 
- str is set to "yes" when the structure of the range and/or domain was correctly 

incorporated in the calculations, and to "no" when it was ignored, 
- fls is the number of times where the considered algorithm failed to satisfy the 

stopping criterion, 
- it/prob is the average number of iterations required by the considered method 
- nfev/prob is the average number of function evaluations required by the 

considered method. 
The names of the methods are self-explanatory. The problems sets were chosen to 
represent "small" problems (n at most 100), and "larger" ones (n above 100). Here 
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TABLE 1 

Performance of the methods when using the range/domain structure 

nprob av.dim. method str fls it/prob nfev/prob 

13 70.77 D. Newton yes 0 5.80 21.68 
no 0 5.80 28.88 

Part. Br. yes 0 14.23 21.53 
no 0 30.54 42.77 

18 320.77 D. Newton yes 0 8.72 33.13 
no 0 9.06 48.48 

Part. Br. yes 0 25.61 35.87 
no 1 49.65 64.93 

and below, the number of function evaluations is calculated as the total number of 
element function evaluations divided by the total number of elements. Therefore, it 
represents the number of times the complete right-hand side has been computed. 

Inspection of these results clearly shows the advantage of taking the structure into 
account, for both methods. One can also observe the behavior predicted above: 
ignoring the structure causes a much worse degradation in performance (and, to 
some extend, reliability) of the partitioned Broyden method than for the discrete 
Newton algorithm. This remark is most apparent when one considers the iteration 
numbers needed for solution. Hence, we can conclude that analyzing this type of 
structure, and using it when available, can be of importance when solving sets of 
nonlinear equations. 

3.3.2. Comparing the methods tested. One of the major issues in running the 
numerical experiments was to compare, if possible, the relative efficiency and 
reliability of the different methods discussed in the beginning of this paper. The data 
for such a comparison appear in Table 2. Conventions in this table (and the 
following ones) are similar to those used in Table 1. Because of the conclusions of 
the previous paragraph, the discrete Newton and partitioned Broyden methods were 
used with correct information on the ranges and domains of the element Jacobians. 

Although this constitutes only a rather limited set of experiments, and caution 
must be exercised before extrapolating any conclusion to a more general framework, 
one feels justified to make the following observations when analyzing this data. 

TABLE 2 

Comparison between the methods 

nprob av.dim. method str fls it/prob nfev/prob 

18 73.39 D. Newton yes 0 5.55 24.93 
Part. Br. yes 0 13.78 20.31 
Schubert no 0 22.66 37.53 
Broyden no 5 26.23 117.46 

36 393.36 D. Newton yes 0 6.92 31.35 
Part. Br. yes 0 18.39 25.57 
Schubert no 0 43.67 73.76 
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TABLE 3 

Results for the trigexp 1 test problem 

rn D. Newton Part. Br. 1 Schubert 

100 7/25.0 13/18.0 16/23.0 
250 7/25.0 13/17.6 16/21.6 
500 7/25.0 13/16.1 16/19.5 

1000 7/25.0 13/13.7 16/22.0 

1. Schubert's method is never better than discrete Newton. 
2. Schubert's method is not better, on average, than partitioned Broyden. Here 

one must remember that these two methods may coincide when the natural partition- 
ing of the nonlinear system is row by row. Therefore, a finer analysis is needed to 
justify this remark, which will be given below using problems for which the two 
methods are different. 

3. Even for small problems, the full Broyden method is usually outperformed by 
other techniques that can use more of the problem structure, if any. 

4. Partitioned Broyden updating is clearly competitive compared to the discrete 
Newton approach. The choice between these two algorithms may depend, in 
practical problems, upon the relative costs of the linear algebra involved and that of 
function evaluations. If this latter cost is high and the problem is partially separable, 
some consideration should be given to the partitioned Broyden algorithm. 

5. The above remarks are more relevant when the problem dimension increases. 
We nevertheless feel that these tentative conclusions should be tempered by a 

closer examination of some particular instances in our test set. Two of these 
instances are therefore more detailed than in the above tables. We first present the 
results obtained for the " trigexpl" problem (see Table 3). 

In Table 3, the number appearing before the slash is the iteration number and that 
appearing after the slash is the number of function evaluations needed to obtain the 
solution to the desired accuracy. The classical Broyden method was also tested for 
n = 100, and needed 53 iterations and 202 function evaluations to obtain the 
solution. The constancy of the number of iterations for the three first methods, as 
the dimension of the problem increases, is quite remarkable here. Partitioned 
Broyden has the best performance in terms of function evaluations, as is the case on 
average for the problems tested. 

However, this is not the case for the minimum surface test problem, whose results 
appear in Table 4. The pure Broyden update was also used for the problems of 
dimension 25, 49, 64, 81 and 100, and needed 35, 30, 33, and 34 iterations 
respectively, as well as 64, 90, 118, 162 and 178 function evaluations. In this 
example, it is therefore advantageous to use the partially separable structure of the 
problem, even for small dimensions. 

We observe also the appreciable degradation due to ignoring the structure of the 
range and domain of the element Jacobians, especially when using the partitioned 
Broyden update. 

3.3.3. Partitioned Broyden vs. Schubert when they are different. As mentioned 
above, we end this comparison by a closer look at the respective performance of the 
partitioned Broyden and Schubert approach, when the structure of the problem does 
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TABLE 4 
Results for the minimum surface test problem 

_ _ D. Newton Part. Br. Schubert 

str no str str no str 

25 8/26.8 8/ 31.3 18/30.5 25/ 39.5 20/ 35.5 
49 8/28.0 8/ 36.0 27/35.9 56/ 74.8 35/ 68.8 
64 10/36.1 10/ 49.7 29/46.8 33/ 52.9 31/ 53.1 
81 10/37.3 10/ 49.7 32/42.9 77/ 89.1 56/ 82.0 

100 10/37.5 10/ 50.8 35/47.9 81/103.2 25/ 63.3 
121 9/33.6 9/ 46.4 30/50.9 87/120.5 52/ 84.1 
169 12/44.6 12/ 63.7 44/57.0 93/114.0 135/219.8 
196 11/41.7 11/ 58.9 41/55.0 90/118.8 75/114.2 
225 16/60.7 14/ 75.7 38/53.0 52/ 77.9 71/128.0 
289 19/71.7 18/ 98.8 61/80.0 150/176.5 102/197.0 
324 18/65.7 18/ 95.3 59/76.0 158/181.5 164/299.7 
400 14/53.8 22/117.6 60/81.0 68/ 93.2 179/339.0 
484 19/71.8 19/104.6 64/92.0 --fail-- 397/619.5 

not make them coincide. We therefore only consider the test problems where the 
natural partitioning is not row-by-row, or, if it is, where the true domain of some of 
the element Jacobians is smaller than their number of elemental variables. The 
results of this comparison are presented in Table 5. 

Two observations arise from the examination of Table 5: 
1. the performance of partitioned Broyden with the structure of ranges/domains 

correctly taken into account is slightly better than in Table 2, where all problems 
were considered, while that of Schubert's update is slightly worse; 

2. on average, partitioned Broyden without taking the range/domain structure 
into account is a little bit better than Schubert's method. We nevertheless feel that 
this should be taken with some caution, since the detailed results show the matter to 
be very much problem dependent. 

We end this comparison by comparing the storage requirements of partitioned 
Broyden and Schubert's methods. As has been said above, we expect Schubert's 
method to use less real storage than partitioned Broyden, because this last approach 
must store each element Jacobian completely, even for the components that overlap 
others. Using the structure of the range and domain also affects the storage for the 
latter method, because, when Ub and/or Wi are not reduced to the identity, the size 
of Tj is then smaller than that of Ji. These storage requirements are compared in 
Table 6. The numbers appearing in this table are the average number of reals to be 
stored for the complete algorithm, including workspace. However, the differences 

TABLE 5 
Schubert vs. Partitioned Broyden when different 

nprob av.dim. method str fls it/prob nfev/prob 

16 73.19 Part. Br. yes 0 13.37 19.75 
no 0 26.37 37.03 

Schubert no 0 23.37 39.13 

30 359.23 Part. Br. yes 0 19.60 27.27 
no 1 33.10 44.02 

Schubert no 0 49.93 84.73 
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TABLE 6 

Storage needs for Schubert and partitioned Broyden 

nprob av.dim. Part. Br. Schubert 

str no str 
16 73.19 1060 1413 988 
30 359.23 5985 7381 4936 

reflect only the differences in the storage scheme of the approximate Jacobians, 
because the remaining space is independent of the method considered. These 
numbers do indeed confirm our expectations. 

3.3.4. General comments and perspectives. Although the tests we reported upon can 
certainly not be considered as final or conclusive, we think that some general 
comments can be made concerning the solution of partially separable systems of 
nonlinear equations. 

Aside from the interest of the theoretical concept of partial separability and 
partitioned updating techniques, it seems clear that the partitioned Broyden ap- 
proach has to be considered seriously when dealing with such problems, especially if 
one has good knowledge of the geometry of the ranges and domains of the element 
Jacobians. 

In this context, we also believe that our results show the importance of using the 
properties of these subspaces when using a more traditional discrete Newton 
approach. 

In view of the above results, one also feels justified to question the efficiency of 
Schubert's algorithm for the class of problems that we have considered, except 
maybe when storage is extremely scarce. 

Finally, we must reassert the need for further testing of the issues we raised in this 
paper. We believe that tests made by a single person and on a single set of test 
problems are not sufficient to draw firm conclusions as to the relative merits of 
numerical algorithms. Open questions also include a proof of global convergence for 
the structured quasi-Newton algorithms that we have described. 
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